Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.5 - Synthetic Division and the Remainder Theorem - Exercise Set - Page 453: 14

Answer

$x^{6}-2x^{5}+5x^{4}-10x^{3}+10x^{2}-20x+40-\displaystyle \frac{68}{x+2}$

Work Step by Step

Dividing with $x-c\qquad...\qquad c=-2.$ Don't forget to place 0's for the missing terms. $\begin{array}{rrrrrrrr} \underline{-2}| &1 & 0 & 1 & 0 & -10 & 0 &0 & 12 \\ & & -2 & 4 &-10 & 20 & -20 & 40 &-80 \\ & --& -- &-- &-- &-- & -- &-- & -- \\ &1 & -2 & 5 & -10 & 10 & -20 & 40 &-68 \end{array}$ Quotient = $x^{6}-2x^{5}+5x^{4}-10x^{3}+10x^{2}-20x+40$ Remainder = $-68$ $\displaystyle \frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}$ $\displaystyle \frac{x^{7}+x^{5}-10x^{3}+12}{x+2}$ = $x^{6}-2x^{5}+5x^{4}-10x^{3}+10x^{2}-20x+40-\displaystyle \frac{68}{x+2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.