Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.5 - Synthetic Division and the Remainder Theorem - Exercise Set - Page 453: 16

Answer

$x^{6}+2x^{5}+4x^{4}+8x^{3}+16x^{2}+32x+64$

Work Step by Step

Dividing with $x-c\qquad...\qquad c=2.$ Don't forget to place 0's for the missing terms. $\begin{array}{rrrrrrrr} \underline{2}| &1 & 0 & 0 & 0 & 0 & 0 & 0 & -128 \\ & & 2 & 4 & 8 & 16 & 32 & 64 & 128 \\ & --& -- &-- &-- &-- & --& -- & -- \\ &1 & 2 & 4 & 8 & 16 & 32 & 64 & 0 \end{array}$ Quotient = $ x^{6}+2x^{5}+4x^{4}+8x^{3}+16x^{2}+32x+64$ Remainder = $0$ $\displaystyle \frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}$ $\displaystyle \frac{x^{7}-128}{x-2}$ = $x^{6}+2x^{5}+4x^{4}+8x^{3}+16x^{2}+32x+64$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.