Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.4 - Division of Polynomials - Exercise Set - Page 444: 25

Answer

$3x^{2}-3x+1+\displaystyle \frac{2}{3x+2}$

Work Step by Step

$\begin{array}{ccccccccccc} & &3x^{2} & -3x& +1 & \\ & &--&-- &--& \\ 3x+2&) & 9x^{3} & -3x^{2} & -3x& +4 & & \\ & & 9x^{3} & +6x^{2 }& & & \color{red}{\leftarrow \small{3x^{2}(3x+2) } } \\ & &--&-- & & & \color{red}{ \small{subtract}} \\ & & & -9x^{2}& -3x& +4 & & \\ & & & -9x^{2} & -6x& & \color{red}{\leftarrow \small{-3x(3x+2) } }\\ & & &--&-- & &\color{red}{ \small{subtract}} \\ & & & & 3x & +4 & \\ & & & & 3x & +2 & \color{red}{\leftarrow \small{1(3x+2) } }\\ & & & &-- & -- &\color{red}{ \small{subtract}} \\ & & & & & 2 & \end{array}$ Quotient = $3x^{2}-3x+1$ Remainder = $ 2$. $\displaystyle \frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}$ $\displaystyle \frac{ 9x^{3}-3x^{2}-3x+4}{3x+2}$ = $3x^{2}-3x+1+\displaystyle \frac{2}{3x+2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.