Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.5 - Determinants and Cramer’s Rule - Exercise Set - Page 240: 40

Answer

$\{(0,4,2)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 3x& +0y &+2z&=&4 \\ 5x& -y & +0z&=&-4\\ 0x& +4y &+3z &=&22 \end{matrix}\right.$ The formula to determine the determinant is $D=\begin{vmatrix} a& b &c \\ d& e &f \\ g &h &i \end{vmatrix}=a\begin{vmatrix} e& f \\ h&i \end{vmatrix}-b\begin{vmatrix} d& f \\ g&i \end{vmatrix}+c\begin{vmatrix} d& e \\ g&h \end{vmatrix}$ Determinant $D$ consists of the $x,y$ and $z$ coefficients. $D=\begin{vmatrix} 3& 0 &2 \\ 5& -1 &0 \\ 0 &4 &3 \end{vmatrix}=31$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} 4& 0 &2 \\ -4& -1 &0 \\ 22 &4 &3 \end{vmatrix}=0$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 3& 4 &2 \\ 5& -4 &0 \\ 0 &22 &3 \end{vmatrix}=124$ For determinant $D_z$ replace the $z−$ coefficients with the constants. $D_z=\begin{vmatrix} 3& 0 &4 \\ 5& -1 &-4 \\ 0 &4 &22 \end{vmatrix}=62$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{0}{31}=0$ and $y=\frac{D_y}{D}=\frac{124}{31}=4$ and $x=\frac{D_z}{D}=\frac{62}{31}=2$ Hence, the solution set is $\{(x,y,z)\} =\{(0,4,2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.