Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.5 - Determinants and Cramer’s Rule - Exercise Set - Page 240: 37

Answer

$\{(3,-1,2)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} x& +y &+z&=&4 \\ x& -2y & +z&=&7\\ x& +3y &+2z &=&4 \end{matrix}\right.$ The formula to determine the determinant is $D=\begin{vmatrix} a& b &c \\ d& e &f \\ g &h &i \end{vmatrix}=a\begin{vmatrix} e& f \\ h&i \end{vmatrix}-b\begin{vmatrix} d& f \\ g&i \end{vmatrix}+c\begin{vmatrix} d& e \\ g&h \end{vmatrix}$ Determinant $D$ consists of the $x,y$ and $z$ coefficients. $D=\begin{vmatrix} 1& 1 &1 \\ 1& -2 &1 \\ 1 &3 &2 \end{vmatrix}=-3$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} 4& 1 &1 \\ 7& -2 &1 \\ 4 &3 &2 \end{vmatrix}=-9$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 1& 4 &1 \\ 1& 7 &1 \\ 1 &4 &2 \end{vmatrix}=3$ For determinant $D_z$ replace the $z−$ coefficients with the constants. $D_z=\begin{vmatrix} 1& 1 &4 \\ 1& -2 &7 \\ 1 &3 &4 \end{vmatrix}=-6$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{-9}{-3}=3$ and $y=\frac{D_y}{D}=\frac{3}{-3}=-1$ and $x=\frac{D_z}{D}=\frac{-6}{-3}=2$ Hence, the solution set is $\{(x,y,z)\} =\{(3,-1,2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.