Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.5 - Determinants and Cramer’s Rule - Exercise Set - Page 240: 35

Answer

$\{(2,-3,4)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 4x& -5y &-6z&=&-1 \\ x& -2y & -5z&=&-12\\ 2x& -y &+0z &=&7 \end{matrix}\right.$ The formula to determine the determinant is $D=\begin{vmatrix} a& b &c \\ d& e &f \\ g &h &i \end{vmatrix}=a\begin{vmatrix} e& f \\ h&i \end{vmatrix}-b\begin{vmatrix} d& f \\ g&i \end{vmatrix}+c\begin{vmatrix} d& e \\ g&h \end{vmatrix}$ Determinant $D$ consists of the $x,y$ and $z$ coefficients. $D=\begin{vmatrix} 4& -5 &-6 \\ 1& -2 &-5 \\ 2 &-1 &0 \end{vmatrix}=12$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} -1& -5 &-6 \\ -12& -2 &-5 \\ 7&-1 &0 \end{vmatrix}=24$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 4& -1 &-6 \\ 1& -12 &-5 \\ 2 &7 &0 \end{vmatrix}=-36$ For determinant $D_z$ replace the $z−$ coefficients with the constants. $D_z=\begin{vmatrix} 4& -5 &-1 \\ 1& -2 &-12 \\ 2 &-1 &7 \end{vmatrix}=48$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{24}{12}=2$ and $y=\frac{D_y}{D}=\frac{-36}{12}=-3$ and $x=\frac{D_z}{D}=\frac{48}{12}=4$ Hence, the solution set is $\{(x,y,z)\} =\{(2,-3,4)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.