Answer
$(x,y)=(4,2)$; dependent equation
Work Step by Step
Need to apply Cramer's Rule.
$x=\dfrac{D_x}{D}$; $y=\dfrac{D_y}{D}$
Now, $D=\begin{vmatrix}3&-4\\2&2\end{vmatrix}=6+8=14$;
$D_x=\begin{vmatrix}4&-4\\12&2\end{vmatrix}=8+48=56$;
$D_y=\begin{vmatrix}3&4\\2&12\end{vmatrix}=36-8=28$
Thus, $x=\dfrac{56}{14}=4$ and $y=\dfrac{28}{14}=2$
Hence, $(x,y)=(4,2)$; dependent equation