Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.5 - Determinants and Cramer’s Rule - Exercise Set - Page 240: 33

Answer

$(-5,-2,7)$

Work Step by Step

Formula to determine the determinant, $D$ of a $3 \times 3$ matrix is: $D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=a \begin{vmatrix}e&f\\h&i\end{vmatrix}-b \begin{vmatrix}d&f\\g&i\end{vmatrix}+c \begin{vmatrix}d&e\\g&h\end{vmatrix}$ Need to apply Cramer's Rule. $x=\dfrac{D_x}{D};y=\dfrac{D_y}{D}; z=\dfrac{D_z}{D}$ Now $D=\begin{vmatrix}1&1&1\\2&-1&1\\-1&3&-1\end{vmatrix}=4$; $D_x=\begin{vmatrix}0&1&1\\-1&-1&1\\-8&3&-1\end{vmatrix}=-20$; $D_y=\begin{vmatrix}1&0&1\\2&-1&1\\-1&-8&-1\end{vmatrix}=-8$ $D_z=\begin{vmatrix}1&1&0\\2&-1&-1\\-1&3&-8\end{vmatrix}=28$ Thus, $x=\dfrac{-20}{4}=-5;y=\dfrac{-8}{4}=-2; z=\dfrac{28}{4}=7$ Hence, $(x,y,z)=(-5,-2,7)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.