Answer
$(x,y)=(7,4)$; dependent equation
Work Step by Step
We will have to re-arrange the given equations as:
$2x-3y=2$ and $5x+4y=51$
Need to apply Cramer's Rule.
$x=\dfrac{D_x}{D}$; $y=\dfrac{D_y}{D}$
Now, $D=\begin{vmatrix}2&-3\\5&4\end{vmatrix}=8+15=23$;
$D_x=\begin{vmatrix}2&-3\\51&4\end{vmatrix}=8+153=161$;
$D_y=\begin{vmatrix}2&2\\5&51\end{vmatrix}=102-10=92$
Thus, $x=\dfrac{161}{23}=7$ and $y=\dfrac{92}{23}=4$
Hence, $(x,y)=(7,4)$; dependent equation