Answer
{$-5,\frac{3}{2}$}
Work Step by Step
Using the rules of factoring trinomials to factor the polynomial, we obtain:
$-7n-2n^{2}=-15$
$-2n^{2}-7n+15=0$
$2n^{2}+7n-15=0$
$2n^{2}-3n+10n-15=0$
$n(2n-3)+5(2n-3)=0$
$(2n-3)(n+5)=0$
Now, we equate the two factors to zero and solve:
$(2n-3)(n+5)=0$
$(2n-3)=0$ or $(n+5)=0$
$n=\frac{3}{2}$ or $n=-5$
Therefore, the solution set is {$-5,\frac{3}{2}$}.