Answer
{$-\frac{7}{2},1$}
Work Step by Step
Using the rules of factoring trinomials to factor the polynomial, we obtain:
$4n^{2}+10n-14=0$
$2(2n^{2}+5n-7)=0$
$2n^{2}+5n-7=0$
$2n^{2}-2n+7n-7=0$
$2n(n-1)+7(n-1)=0$
$(n-1)(2n+7)=0$
Now, we equate the two factors to zero and solve:
$(n-1)(2n+7)=0$
$(n-1)=0$ or $(2n+7)=0$
$n=1$ or $n=-\frac{7}{2}$
Therefore, the solution set is {$-\frac{7}{2},1$}.