Answer
$(3a-4b)(9a^2+12ab+16b^2)$
Work Step by Step
Using $a^3-b^3=(a-b)(a^2+ab+b^2)$, or the factoring of the difference of $2$ cubes, the factored form of the given expression, $
27a^3-64b^3
,$ is \begin{array}{l}\require{cancel}
(3a-4b)[(3a)^2+3a(4b)+(4b)^2]
\\\\=
(3a-4b)(9a^2+12ab+16b^2)
.\end{array}