Answer
$8x^{3}$
Work Step by Step
Using the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$, we obtain:
$(\frac{6x^{\frac{2}{7}}}{3x^{-\frac{5}{7}}})^{3}$
=$(\frac{6}{3}\times\frac{x^{\frac{2}{7}}}{x^{-\frac{5}{7}}})^{3}$
=$(2\times x^{\frac{2}{7}-(-\frac{5}{7})})^{3}$
=$(2\times x^{\frac{2}{7}+\frac{5}{7}})^{3}$
=$(2\times x^{\frac{2+5}{7}})^{3}$
=$(2\times x^{\frac{7}{7}})^{3}$
=$(2x^{1})^{3}$
=$2^{3}x^{1\times3}$
=$8x^{3}$