Answer
$\frac{4}{n^{\frac{1}{4}}}$
Work Step by Step
Using the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$, we obtain:
$\frac{64n^{\frac{5}{8}}}{16n^{\frac{7}{8}}}$
=$\frac{64}{16}\times\frac{n^{\frac{5}{8}}}{n^{\frac{7}{8}}}$
=$4\times n^{\frac{5}{8}-\frac{7}{8}}$
=$4\times n^{\frac{5(1)-7(1)}{8}}$
=$4\times n^{\frac{5-7}{8}}$
=$4\times n^{\frac{-2}{8}}$
=$4n^{-\frac{1}{4}}$
=$\frac{4}{n^{\frac{1}{4}}}$