Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 135: 11

Answer

See answers below

Work Step by Step

a) $A^2=A.A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}.\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}=\begin{bmatrix} -1 & -4\\ 8 & 7 \end{bmatrix}$ $A^3=A^2.A=\begin{bmatrix} -1 & -4\\ 8 & 7 \end{bmatrix}.\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}=\begin{bmatrix} -9 & -11\\ 22 & 13 \end{bmatrix}$ $A^4=A^3.A=\begin{bmatrix} -9 & -11\\ 22 & 13 \end{bmatrix}.\begin{bmatrix} -1 & -4\\ 8 & 7 \end{bmatrix}=\begin{bmatrix} -31 & -24\\ 48 & 17 \end{bmatrix}$ b) ) $A^2=A.A=\begin{bmatrix} 0& 1 & 0\\ -2 & 0 & 1 \\ 4 & -1 & 0 \end{bmatrix}.\begin{bmatrix} 0& 1 & 0\\ -2 & 0 & 1 \\ 4 & -1 & 0 \end{bmatrix}=\begin{bmatrix} -2 & 0 & 1\\ 4 & -3 & 0 \\ 2 & 4 & -1 \end{bmatrix}$ $A^3=A^2.A=\begin{bmatrix} -2 & 0 & 1\\ 4 & -3 & 0 \\ 2 & 4 & -1 \end{bmatrix}.\begin{bmatrix} 0& 1 & 0\\ -2 & 0 & 1 \\ 4 & -1 & 0 \end{bmatrix}=\begin{bmatrix} 4 & -3 & 0\\ 6 & 4 &-3 \\ -12 & 3& 4 \end{bmatrix}$ $A^4=A^3.A=\begin{bmatrix} 4 & -3 & 0\\ 6 & 4 &-3 \\ -12 & 3& 4 \end{bmatrix}.\begin{bmatrix} 0& 1 & 0\\ -2 & 0 & 1 \\ 4 & -1 & 0 \end{bmatrix}=\begin{bmatrix} 6&4 & -3\\ -20 & 9 & 4 \\ 10 & -16 & 3 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.