Answer
$8x^{4}+4x^{3}+6x^{2}=(2x^{2}+1)(4x^{2}+2x+1)+(-2x-1)$
Work Step by Step
$\left.\begin{array}{l}
\\\\
2x^{2}+1\ )\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right. \left.\begin{array}{lllll}
4x^{2} & +2x & +1 & & \\
\hline 8x^{4} & +4x^{3} & +6x^{2} & & \\
8x^{4} & & +4x^{2} & & \\
-- & -- & -- & & \\
& 4x^{3} & +2x^{2} & & \\
& 4x^{3} & & +2x & \\
& -- & -- & -- & \\
& & 2x^{2} & -2x & \\
& & 2x^{2} & & +1\\
& & -- & -- & --\\
& & & -2x & -1
\end{array}\right.$
$Q(x)=4x^{2}+2x+1,\quad R(x)=-2x-1$
In the form $P(x)=D(x)\cdot Q(x)+R(x),$
$8x^{4}+4x^{3}+6x^{2}=(2x^{2}+1)(4x^{2}+2x+1)+(-2x-1)$