College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 2, Functions - Section 2.7 - Combining Functions - 2.7 Exercises - Page 253: 55

Answer

$f \circ g$: for all $D_{f\circ g}=\{x|x \in \mathbb{R}, x\ne 0\}$ $g \circ f$: for all $D_{g\circ f}=\{x|x \in \mathbb{R}, x \ne -1\}$, $f \circ f$: for all $D_{f\circ f}=\{x|x \in \mathbb{R}, x\ne -\frac{1}{2}, x\ne -1\}$, $g \circ g$: for all $D_{g\circ g}=\{x|x \in \mathbb{R}\}$

Work Step by Step

$f(x)=\frac{x}{x+1}$, $D_f=\{x|x \in \mathbb{R}, x\ne -1 \}$ $g(x)=2x-1$, $D_g=\{x|x \in \mathbb{R} \}$, $f(g(x))=\frac{2x-1}{2x-1+1}=\frac{2x-1}{2x}$ $D_{f\circ g}=\{x|x \in \mathbb{R}, x\ne 0\}$ $g(f(x))=\frac{2x}{x+1}-1=\frac{x-1}{x+1}$ $D_{g\circ f}=\{x|x \in \mathbb{R}, x \ne -1\}$, $f(f(x))=\frac{x}{2x+1}$ $D_{f\circ f}=\{x|x \in \mathbb{R}, x\ne -\frac{1}{2}, x\ne-1\}$, $g(g(x))=2(2x-1)-1=4x-3$ $D_{g\circ g}=\{x|x \in \mathbb{R}\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.