Answer
$x=n\pi$
$x=arctan~2+n\pi$
where $n$ is an integer.
Work Step by Step
$tan^2x-2~tan~x=0$
$tan~x(tan~x-2)=0$
$tan~x=0$ or $tan~x=2$
$tan~x=0$
$x=0$
$tan~x=2$
$x=arctan~2$
The period of $tan~x$ is $\pi$. The general solutions are:
$x=0+n\pi=n\pi$
$x=arctan~2+n\pi$
where $n$ is an integer.