Answer
$9x^4-6x^3-8x^2-24x+32$
Work Step by Step
Applying the Distributive Property, multiply each term in the second set of parentheses with $3x-4$:
$(3x-4)(3x^3)=(3x)(3x^3)+(-4)(3x^3)=9x^4-12x^3\\(3x-4)(2x^2)=(3x)(2x^2)+(-4)(2x^2)=6x^3-8x^2\\(3x-4)(-8)=(3x)(-8)+(-4)(3-8)=-24x+32$
Thus, $(3x-4)(3x^3)+(3x-4)(2x^2)+(3x-4)(-8)\\=9x^4-12x^3+6x^3-8x^2-24x+32\\=9x^4-6x^3-8x^2-24x+32$