Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.3 Evaluate Trigonometric Functions of Any Angle - 13.3 Exercises - Skill Practice - Page 870: 9

Answer

See below

Work Step by Step

Substitute $(-3,-5)$ into $x^2+y^2=r^2$ to find $r$: $$x^2+y^2=r^2\\(-3)^2+(-5)^2=r^2\\r^2=34\\r=\pm \sqrt 34\\r=\sqrt 34$$ $\sin \theta=\frac{y}{r}=\frac{-5}{\sqrt 34}=\frac{-5\sqrt 34}{34}$ $\cos \theta=\frac{x}{r}=\frac{-2\sqrt 13}{13}$ $\csc \theta=\frac{r}{y}=\frac{\sqrt 34}{-5}=\frac{-\sqrt 34}{5}$ $\sec \theta=\frac{r}{x}=-\frac{\sqrt 34}{3}$ $\tan \theta=\frac{y}{x}=\frac{5}{3}$ $\cot \theta=\frac{x}{y}=\frac{3}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.