Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.3 Evaluate Trigonometric Functions of Any Angle - 13.3 Exercises - Skill Practice - Page 870: 10

Answer

See below

Work Step by Step

Substitute $(5,-\sqrt 11)$ into $x^2+y^2=r^2$ to find $r$: $$x^2+y^2=r^2\\5^2+(-\sqrt 11)^2=r^2\\r^2=\sqrt 36\\r=\pm \sqrt 6\\r=\sqrt 6$$ $\sin \theta=\frac{y}{r}=\frac{-\sqrt 11}{6}$ $\cos \theta=\frac{x}{r}=\frac{5}{6}$ $\csc \theta=\frac{r}{y}=\frac{-6\sqrt 11}{11}$ $\sec \theta=\frac{r}{x}=\frac{6}{5}$ $\tan \theta=\frac{y}{x}=\frac{-\sqrt 11}{5}$ $\cot \theta=\frac{x}{y}=\frac{-5\sqrt 11}{11}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.