Answer
$\sin \theta=\dfrac{12}{15}$
$\cos \theta=\dfrac{-9}{15}$
$\tan \theta=\dfrac{-12}{9}$
$\csc \theta=\dfrac{15}{12}$
$\sec \theta=\dfrac{-15}{9}$
$\cot \theta=\dfrac{-9}{12}$
Work Step by Step
$r=\sqrt {(-9)^2+(12)^2}=15$
The Trigonometric Identities can be defined as:
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{12}{15}$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-9}{15}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{-12}{9}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{15}{12}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=\dfrac{-15}{9}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=\dfrac{-9}{12}$