Answer
$\sin \theta=\dfrac{-24}{25}$
$\cos \theta=\dfrac{-7}{25}$
$\tan \theta=\dfrac{24}{7}$
$\csc \theta=\dfrac{-25}{24}$
$\sec \theta=\dfrac{-25}{7}$
$\cot \theta=\dfrac{7}{24}$
Work Step by Step
$r=\sqrt {(-7)^2+(-24)^2}=25$
The Trigonometric Identities can be defined as:
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{-24}{25}$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-7}{25}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{24}{7}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{-25}{24}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=\dfrac{-25}{7}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=\dfrac{7}{24}$