Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.3 Evaluate Trigonometric Functions of Any Angle - 13.3 Exercises - Skill Practice - Page 870: 8

Answer

See below

Work Step by Step

Substitute $(-6,9)$ into $x^2+y^2=r^2$ to find $r$: $$x^2+y^2=r^2\\9^2+(-6)^2=r^2\\r^2=117\\r=\pm 3\sqrt 13\\r=3\sqrt 13$$ $\sin \theta=\frac{y}{r}=\frac{9}{3\sqrt 13}=\frac{3\sqrt 13}{13}$ $\cos \theta=\frac{x}{r}=\frac{-2\sqrt 13}{13}$ $\csc \theta=\frac{r}{y}=\frac{-2\sqrt 2}{2}=\frac{\sqrt 13}{3}$ $\sec \theta=\frac{r}{x}=-\frac{\sqrt 13}{2}$ $\tan \theta=\frac{y}{x}=-\frac{3}{2}$ $\cot \theta=\frac{x}{y}=-\frac{2}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.