Answer
$n=5$
Work Step by Step
$Given,$ $n=\sqrt (4n+5)$
Squaring both sides,we get:
$n^{2}=4n+5$
$n^{2}-4n-5=0$
$(n-5)(n+1)=0$
$n=5,n=-1$
We need to check by the putting the obtained solutions in
the original equation.
$n=5$
$L.H.S=5$
$R.H.S=\sqrt (4X5+5)=\sqrt 25=5$
$L.H.S=R.H.S$,hence it is a valid solution
$x=-1$
$L.H.S=-1$
$R.H.S=\sqrt (4X-1+5)=1$
$L.H.S$ does not equal $R.H.S$,hence it is an extraneous solution.