University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 9 - Rotation of Rigid Bodies - Problems - Exercises - Page 295: 9.21

Answer

(a) $a_{rad} = 15.1~m/s^2$ (b) $a_{rad} = 15.1~m/s^2$

Work Step by Step

(a) $\alpha=3~rad/s^2$ $r=\frac{40}{2}~cm=0.200~m$ $\theta=4\pi~rad$ $\omega^2-\omega_0^2 = 2\alpha ~\theta$ $\omega^2-0 = 2\alpha ~\theta$ $\omega = \sqrt{2\alpha ~\theta}$ $\omega = \sqrt{(2)(3.00~rad/s^2)(4~\pi~rad)}$ $\omega = 8.68~rad/s$ We can use $\omega$ to find $a_{rad}$ $a_{rad} = \omega^2~r$ $a_{rad} = (8.68~rad/s)^2(0.200~m)$ $a_{rad} = 15.1~m/s^2$ (b) $a = \alpha ~r = (3.00~rad/s^2)(0.200~m)$ $a = 0.6~m/s^2$ We can find the speed $v$ after two revolutions. $v^2-v_0^2 = 2ad$ $v^2-0= 2a(4\pi~r)$ $v = \sqrt{2ad} = \sqrt{(2)(0.6~m/s^2)[(4\pi)(0.200~m)]}$ $v = 1.74~m/s$ We can use $v$ to find $a_{rad}$ $a_{rad} = \frac{v^2}{r} = \frac{(1.74~m/s)^2}{0.200~m}$ $a_{rad} = 15.1~m/s^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.