University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 9 - Rotation of Rigid Bodies - Problems - Exercises - Page 295: 9.6

Answer

(a) t = 4.23 s (b) $\alpha = -78.1~rad/s^2$ (c) The motor shaft turns through 93.3 revolutions. (d) $\omega = 250~rad/s$ (e) $\omega_{ave} = 139~rad/s$

Work Step by Step

(a) $\theta (t) = (250~rad/s)~t-(20.0~rad/s^2)~t^2-(1.50~rad/s^3)~t^3$ $\omega (t) = \frac{d\theta}{dt}$ $\omega (t) = (250~rad/s)-(40.0~rad/s^2)~t-(4.50~rad/s^3)~t^2$ We can find $t$ when $\omega (t) = 0$ $\omega (t) = 0$ $(4.50~rad/s^3)~t^2+(40.0~rad/s^2)~t -(250~rad/s) = 0$ We can use the quadratic formula to find $t$. $t = \frac{-b\pm \sqrt{b^2-4ac}}{2a}$ $t = \frac{-(40.0)\pm \sqrt{(40.0)^2-(4)(4.50)(-250)}}{(2)(4.50)}$ $t = -13.1~s, 4.23~s$ Since the negative value is unphysical, the solution is $t = 4.23~s$. (b) $\alpha (t) = \frac{d\omega}{dt}$ $\alpha (t) = -(40.0~rad/s^2)-(9.00~rad/s^3)~t$ We can find $\alpha$ when t = 4.23 s: $\alpha = -(40.0~rad/s^2)-(9.00~rad/s^3)(4.23~s)$ $\alpha = -78.1~rad/s^2$ (c) We can find $\theta$ when t = 4.23 s: $\theta = (250~rad/s)(4.23~s)-(20.0~rad/s^2)(4.23~s)^2-(1.50~rad/s^3)(4.23~s)^3$ $\theta = 586.11~rad$ We can find the number of revolutions. $rev = \frac{\theta}{2 \pi}$ $rev = \frac{586.11~rad}{2 \pi}$ $rev = 93.3$ The motor shaft turns through 93.3 revolutions. (d) We can find $\omega$ when $t = 0$: $\omega = (250~rad/s)-(40.0~rad/s^2)(0)-(4.50~rad/s^3)(0)^2$ $\omega = 250~rad/s$ (e) We can find the average angular velocity between $t = 0$ and $t = 4.23~s$: $\omega_{ave} = \frac{\theta_2-\theta_1}{t}$ $\omega_{ave} = \frac{586.11~rad-0}{4.23~s}$ $\omega_{ave} = 139~rad/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.