Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 32 - Nuclear Physics and Nuclear Radiation - Problems and Conceptual Exercises - Page 1155: 79

Answer

(a) $1.2\times 10^{-15}m \space r\le 7.1\times 10^{-15}m$ (b) $35.2$ (c) $209$

Work Step by Step

(a) We can find the required range in nuclear radii as follows: We know that $r=(1.2\times 10^{-15}m)A^{\frac{1}{3}}$ The minimum radius is $r_{min}=(1.2\times 10^{-15m})(1)^{\frac{1}{3}}=1.2\times 10^{-15}m$ and the maximum radius is $r_{max}=(1.2\times 10^{-15}m)(209)^{\frac{1}{3}}=7.1\times 10^{-15}m$ Thus the radii of all the stable nuclei range is $1.2\times 10^{-15}m\le 7.1\times 10^{-15}m$. (b) We can find the required ratio as follows: $\frac{S_{max}}{S_{min}}=\frac{4\pi((1.2\times 10^{-15}m)(209)^{\frac{1}{3}})^2}{4\pi((1.2\times 10^{-15}m)(1)^{\frac{1}{3}})^2}=35.2$ (c) The ratio of volumes can be determined as $\frac{V_{max}}{V_{min}}=\frac{{\frac{4}{3}\pi r_{max}^3}}{{\frac{4}{3}\pi r_{min}^3}}$ $\frac{V_{max}}{V_{min}}=\frac{r_{max}^3}{r_{min}^3}$ We plug in the known values to obtain: $\frac{V_{max}}{V_{min}}=\frac{[(1.2\times 10^{-15}m)(209)^{\frac{1}{3}}]^3}{[(1.2\times 10^{-15}m)(1)^{\frac{1}{3}}]^3}=209$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.