Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 2 - Kinematics in One Dimension - Problems - Page 50: 63

Answer

11.35 m/s - Downward direction

Work Step by Step

Let's take, The initial velocity of the second stone $=u_{2}$ Displacement of the two stones $=15\space m $ Time in the air for the first stone $=t_{1}$ Time in the air for the first stone until 3.2m displacement$=t_{2}$ Time in the air for the second stone $=t_{1}-t_{2}$ Gravitational Acceleration $=9.8\space m/s^{2}\downarrow$ Let's apply equation 2.8, $S=ut+\frac{1}{2}at^{2}$ to the first stone, until it comes to the ground. $\downarrow S=ut+\frac{1}{2}at^{2}$ $15\space m=0\space m/s\times t_{1} + \frac{1}{2}\times9.8\space m/s^{2}t_{1}^{2}$ $t_{1}^{2}=\frac{30}{9.8}s^{2}=>t_{1}=1.75\space s$ Let's apply equation 2.8, $S=ut+\frac{1}{2}at^{2}$ to the first stone, until it comes to 3.2 m. $\downarrow S=ut+\frac{1}{2}at^{2}$ $3.2\space m=0\space m/s\times t_{2}+\frac{1}{2}\times 9.8\space m/s^{2}\times t_{2}^{2}$ $t_{2}^{2}=\frac{6.4}{9.8}s^{2}=>t_{2}=0.808\space s$ $t_{1}-t_{2}=1.75\space s-0.808\space s=0.94\space s$ Let's apply equation 2.8, $S=ut+\frac{1}{2}at^{2}$ to the second stone, until it comes to the ground. $\downarrow S=ut+\frac{1}{2}at^{2}$ $15\space m=u_{1}(t_{1}-t_{2})+\frac{1}{2}\times 9.8\space m/s^{2}(t_{1}-t_{2})^{2}$ $15\space m=u_{1}(0.94\space s)+\frac{1}{2}\times 9.8\space m/s^{2}(0.94\space s)^{2}$ $u_{1}=\frac{15-4.33}{0.94}m/s=11.35\space m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.