Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 9 - Center of Mass and Linear Momentum - Problems - Page 256: 125b

Answer

$1.187\times10^{-12}\;J$

Work Step by Step

The linear momentum of Particle 3: $\vec{P_3}=-(1.002\times10^{-19}\hat i+6.68\times10^{-20}\hat j)\;kg.m/s$ Therefore, the magnitude of the linear momentum of Particle 3 is given by $P_3=\sqrt {(1.002\times10^{-19})^2+(6.68\times10^{-20})^2}\;kg.m/s$ or, $P_3=1.204\times10^{-19}\;kg.m/s$ Now the kinetic energy appears in this transformation is given by $K.E=\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2+\frac{1}{2}m_3v_3^2$ or, $K.E=\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2+\frac{P_3^2}{2m_3}$ or, $K.E=\frac{1}{2}\times16.7 \times10^{-27}\times(6.00 \times10^6)^2+\frac{1}{2}\times8.35 \times10^{-27}\times(8.00 \times10^6)^2+\frac{(1.204\times10^{-19})^2}{2\times11.7 \times10^{-27}}\;J$ or, $K.E=1.187\times10^{-12}\;J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.