Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 41 - Conduction of Electricity in Solids - Problems - Page 1274: 30

Answer

$[Number \space of \space Occupied \space States] = 6.7 \times 10^{19}$

Work Step by Step

There are 4 steps in solving this question. First we need to find the probability that a state of E occupied at temperature T. $ P(E) = \frac{1}{e^{E_1 - E_F/kT} + 1}$ Then, solve the denominator first to make the next steps easier, Find the Fermi Energy in Joule $E_F = \frac{(0.121)h^2}{m_e} n^{2/3}$ Where $h = 6.626\times 10^{-34} J.s$ $m_e=9.109\times 10^{-31} kg$ n from the question $n = 1.70 \times 10^{28} m^{-3}$ $E_F = \frac{(0.121)(6.626\times 10^{-34} J.s)^2}{(9.109\times 10^{-31} kg)} (1.70 \times 10^{28} m^{-3})^{2/3}$ $E_F = 3.855 \times 10^{-19} J$ Take back the denominator to solve, where $E$ in the question is $4.00 \times 10^{-19}J$ and $k = 1.38 \times 10^{-23} J/K$ and $T = 200k$ $e^{(4.00 \times 10^{-19}J) - (3.855 \times 10^{-19} J)/(1.38 \times 10^{-23} J/K)(200k) + 1}$ $ = 192.258$ So $ P(E) = \frac{1}{192.258}$ So $ P(E) = 5.2 \times 10^{-3}$ Next step is to calculate the density of states associated with the conduction electrons of a metal from equation $N(E) = CE $ $C = \frac{8\sqrt 2 \pi (9.109\times 10^{-31} kg)^{3/2}}{(6.626\times 10^{-34} J.s)^3}$ $C = 1.062 \times 10^{56} kg^{3/2}/J^3.s^3$ So, $N(E) = (1.062 \times 10^{56} kg^{3/2}/J^3.s^3)(4.00 \times 10^{-19}J) $ $N(E) = 6.717 \times 10^{46} /m^3.J$ (The unit has converted since $1 kg = 1 \space J.s^2.m^{-2}$ ) Then, find the number of occupied state using the formula $N_0(E) = P(E)N(E) $ $N_0(E) = (6.717 \times 10^{46} /m^3.J) (5.2 \times 10^{-3})$ $N_0(E) = 3.49 \times 10^{44} /m^3.J$ Lastlly, Given the range of energy $\Delta E = 3.20 \times 10^{-20}J$ and volume, $V = 6.00 \times 10^{-6} m^3 $ $[Number \space of \space Occupied \space States] = N_0(E) V \Delta E$ $[Number \space of \space Occupied \space States] = (3.49 \times 10^{44} /m^3.J) ( 6.00 \times 10^{-6} m^3) (3.20 \times 10^{-20}J)$ $[Number \space of \space Occupied \space States] = 6.7 \times 10^{19}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.