Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 40 - All About Atoms - Problems - Page 1249: 57

Answer

(a) $4.1\times10^{-16}\;\text{atoms}$ (b) $68.576\;J$

Work Step by Step

(a) The naturally occurring population ratio $\frac{N_x}{N_0}$ of the two states is due to thermal agitation of the gas atoms $\frac{N_x}{N_0}=e^{-\frac{(E_x-E_0)}{kT}}$ where, $(E_x-E_0)$ is the energy separation between the two states. Substituting the given values: $(E_x-E_0)=\frac{ch}{\lambda}=\frac{3\times10^{8}\times 6.63\times 10^{-34}}{580\times10^{-9}}\;J=3.429\times10^{-19}\;J=2.143\;eV$ $N_0=4\times 10^{20}\;\text{atoms}$ and $T=300\;K$ $\frac{N_x}{4\times 10^{20}}=e^{-\frac{2.143}{8.62\times10^{-5}\times 300}}$ $N_x\approx4.1\times10^{-16}\;\text{atoms}$ Therefore, the number of atoms in upper state is $4.1\times10^{-16}$ (b) The total photon energy in ground state is $E_0=1\times10^{20}\times\frac{ch}{\lambda}=1\times10^{20}\times2.143\;eV$ The total photon energy in excited state is $E_1=3\times10^{20}\times\frac{ch}{\lambda}=3\times10^{20}\times2.143\;eV$ Therefore, the maximum energy that could be released by the atoms in a single laser pulse is $E_1-E_0=(3-1)\times10^{20}\times 2.143\;eV=4.286\times10^{20}\;eV=68.576\;J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.