Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 40 - All About Atoms - Problems - Page 1249: 44e

Answer

$5.7\;keV$

Work Step by Step

Energy of the electron: $E=20\;keV=20000 \;eV$ Difference in wavelength: $\Delta\lambda=\lambda_2-\lambda_1=130\;pm=0.13\;nm\\ \lambda_2=\Delta\lambda+\lambda_1$ $E=\frac{hc}{\lambda_1}+\frac{hc}{\lambda_2}$ $\frac{E}{hc}=\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$ $\frac{1}{\lambda_0}=\frac{1}{\lambda_1}+\frac{1}{\lambda_2}$ [where, $\frac{hc}{E}=\lambda_0$] .....................(1) Now, $\lambda_0=\frac{hc}{E}$ or, $\lambda_0=\frac{6.626\times 10^{-34}\times3\times10^{8}}{20000\times1.6\times10^{-19}}\;m=6.21\times10^{-11}\;m=0.0621\;nm$ Now, eq. (1) becomes $\frac{1}{\lambda_0}=\frac{1}{\lambda_1}+\frac{1}{\Delta\lambda+\lambda_1}$ or, $\lambda_1^2+\lambda_1(\Delta\lambda-2\lambda_0)-\lambda_0\Delta\lambda=0$ or, $\lambda_1^2+\lambda_1(0.13-2\times0.0621)-0.0621\times0.13=0$ or, $\lambda_1^2+0.0058\lambda_1-8.073\times10^{-3}=0$ The solution is: $\lambda_1=\frac{-0.0058\pm\sqrt {0.0058^2+4\times1\times8.073\times10^{-3}}}{2}\;nm$ The valid solution is: $\lambda_1=0.087\;nm$ Thus, the wavelength associated with the photon emitted in the First collision is: $\lambda_1=0.087\;nm$ Thus, $\lambda_2=\Delta\lambda+\lambda_1=(0.13+0.087)\;nm=0.217\;nm$ Therefore, the wavelength associated with the photon emitted in the second collision is: $\lambda_2=0.217\;nm$ Thus the energy associated with the photon emitted in second photon is $\frac{hc}{\lambda_2}=\frac{1240\;eV-nm}{0.217\;nm}=5714\;eV=5.7\;keV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.