Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 40 - All About Atoms - Problems - Page 1249: 54

Answer

$2.69\times 10^{15}\;\text{moles}$

Work Step by Step

The naturally occurring population ratio $\frac{N_x}{N_0}$ of the two states is due to thermal agitation of the gas atoms $\frac{N_x}{N_0}=e^{-\frac{(E_x-E_0)}{kT}}$ where, $(E_x-E_0)$ is the energy separation between the two states. Given: $(E_x-E_0)=\frac{ch}{\lambda}=\frac{3\times10^{8}\times 6.63\times 10^{-34}}{550\times10^{-9}}\;J=3.616\times10^{-19}\;J=2.26\;eV$ $N_x=10\;\text{atoms}$ and $T=298\;K$ Substituting the given values $\frac{10}{N_0}=e^{-\frac{2.26}{8.62\times10^{-5}\times298}}$ or, $N_0=10\times e^{\frac{2.26}{8.62\times10^{-5}\times298}}$ $N_0=1.62\times10^{39}\;\text{atoms}$ 1 mole neon gas contains avogadro's number $(6.022\times10^{23})$ atoms Therefore, the number of moles correspond to $1.62\times10^{39}$ number of atoms is: $n=\frac{1.62\times10^{39}}{6.022\times10^{23}}\;\text{moles}=2.69\times 10^{15}\;\text{moles}$ Therefore, the required neon is $2.69\times 10^{15}\;\text{moles}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.