Answer
We compute the coordinate pairs $(x, y)$ from $$x=\left(v_{0} \cos \theta\right) t$$ and $$y=v_{0} \sin \theta t-\frac{1}{2} g t^{2}$$
for $t=20 \mathrm{s}$ and the speeds and angles given in the problem.
then we obtain
$$\begin{array}{ll}{\left(x_{A}, y_{A}\right)=(10.1 \mathrm{km}, 0.556 \mathrm{km})} & {\left(x_{B}, y_{B}\right)=(12.1 \mathrm{km}, 1.51 \mathrm{km})} \\ {\left(x_{C}, y_{C}\right)=(14.3 \mathrm{km}, 2.68 \mathrm{km})} & {\left(x_{D}, y_{D}\right)=(16.4 \mathrm{km}, 3.99 \mathrm{km})}\end{array}$$
and $$\left(x_{E}, y_{E}\right)=(18.5 \mathrm{km}, 5.53 \mathrm{km})$$
Work Step by Step
We compute the coordinate pairs $(x, y)$ from $$x=\left(v_{0} \cos \theta\right) t$$ and $$y=v_{0} \sin \theta t-\frac{1}{2} g t^{2}$$
for $t=20 \mathrm{s}$ and the speeds and angles given in the problem.
then we obtain
$$\begin{array}{ll}{\left(x_{A}, y_{A}\right)=(10.1 \mathrm{km}, 0.556 \mathrm{km})} & {\left(x_{B}, y_{B}\right)=(12.1 \mathrm{km}, 1.51 \mathrm{km})} \\ {\left(x_{C}, y_{C}\right)=(14.3 \mathrm{km}, 2.68 \mathrm{km})} & {\left(x_{D}, y_{D}\right)=(16.4 \mathrm{km}, 3.99 \mathrm{km})}\end{array}$$
and $$\left(x_{E}, y_{E}\right)=(18.5 \mathrm{km}, 5.53 \mathrm{km})$$