Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 90: 89a

Answer

The $y$ coordinate at that time is $$ y=45 \mathrm{m} . $$

Work Step by Step

Given the initial velocity $\vec{v}_{0}=(8.0 \mathrm{m} / \mathrm{s}) \hat{\mathrm{j}}$ and the acceleration $$\vec{a}=\left(4.0 \mathrm{m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(2.0 \mathrm{m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}},$$ the position vector of the particle is $$\vec{r}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}=(8.0 \hat{\mathrm{j}}) t+\frac{1}{2}(4.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}) t^{2}=\left(2.0 t^{2}\right) \hat{\mathrm{i}}+\left(8.0 t+1.0 t^{2}\right) \hat{\mathrm{j}}$$ Therefore, the time that corresponds to $x=29 \mathrm{m}$ can be found by solving the equation $2.0 t^{2}=29,$ which leads to $t=3.8 \mathrm{s}$ . The $y$ coordinate at that time is $$ y=(8.0 \mathrm{m} / \mathrm{s})(3.8 \mathrm{s})+\left(1.0 \mathrm{m} / \mathrm{s}^{2}\right)(3.8 \mathrm{s})^{2}=45 \mathrm{m} . $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.