Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 90: 90

Answer

$v_0 = 23~ft/s$

Work Step by Step

We can find an expression for $v_x$: $tan~\theta = \frac{v_{0y}}{v_x}$ $v_x = \frac{v_{0y}}{tan~\theta}$ We can find an expression for the time of flight: $x = v_x~t$ $t = \frac{x}{v_x}$ $t = \frac{x}{\frac{v_{0y}}{tan~\theta}}$ $t = \frac{x~tan~\theta}{v_{0y}}$ We can find $v_{0y}$: $y = y_0+v_{0y}~t+\frac{1}{2}a_y~t^2$ $y = y_0+v_{0y}~\frac{x~tan~\theta}{v_{0y}}+\frac{1}{2}(a_y)~(\frac{x~tan~\theta}{v_{0y}})^2$ $y - y_0-x~tan~\theta = \frac{a_y~(x~tan~\theta)^2}{2~v_{0y}^2}$ $v_{0y}^2 = \frac{a_y~(x~tan~\theta)^2}{2~(y - y_0-x~tan~\theta)}$ $v_{0y} = \sqrt{\frac{a_y~(x~tan~\theta)^2}{2~(y - y_0-x~tan~\theta)}}$ $v_{0y} = \sqrt{\frac{(-32~ft/s^2)~(13~ft)^2~(tan~55^{\circ})^2}{2~(10~ft - 7.0~ft-(13~ft)~tan~55^{\circ})}}$ $v_{0y} = 18.82~ft/s$ We can find $v_0$: $sin~\theta = \frac{v_{0y}}{v_0}$ $v_0 = \frac{v_{0y}}{sin~\theta}$ $v_0 = \frac{18.82~ft/s}{sin~55^{\circ}}$ $v_0 = 23~ft/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.