Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 85: 32a

Answer

$12.0m.$

Work Step by Step

If $\vec{v}_{0}$ is expressed as a magnitude (the speed $v_{0}$) and an angle $\theta_{0}$ (measured from the horizontal), the particle's equations of motion along the horizontal $x$ axis and vertical $y$ axis are $\left[\begin{array}{ll} x-x_{0}=(v_{0}\cos\theta_{0})t & (4- 21)\\ y-y_{0}=(v_{0}\sin\theta_{0})t-\frac{1}{2}gt^{2} & (4- 22)\\ v_{y}=v_{0}\sin\theta_{0}-gt & (4- 23)\\ v_{y}^{2}=(v_{0}\sin\theta_{0})^{2}-2g(y-y_{0}) & (4- 24) \end{array}\right]$ The initial velocity components are $\left\{\begin{array}{l} v_{0x}=v_{0}\cos\theta_{0}\\ v_{0y}=v_{0}\sin\theta_{0} \end{array}\right.$ ---- Given $v_{x}=v_{0}\cos 40.0^{\mathrm{o}}$ remains unchanged during flight, we use $\Delta x=22.0\mathrm{m}$ to find the time of flight: $t=\displaystyle \frac{\Delta x}{v_{x}}=\frac{22.0\mathrm{m}}{(25.0\mathrm{m}/\mathrm{s})\cos 40.0^{\mathrm{o}}}=1.15\mathrm{s}.$ (a) Equation 4-22 will give us the height above the release point at this time: $\displaystyle \Delta y=(v_{0}\sin\sin\theta_{0})t-\frac{1}{2}gt^{2}$ $=(25.0m/s)\sin\displaystyle \sin 40.0^{o}(1.15s)-\frac{1}{2}(9.80m/\mathrm{s}^{2})(1.15s)^{2}$ $=12.0m.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.