Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 85: 19a

Answer

$\vec{r}=(72.0m)\hat{i}+(90.7\mathrm{m})\hat{\mathrm{j}}.$

Work Step by Step

The components of acceleration, $\left\{\begin{array}{l} a_{x}=3t\\ a_{y}=4 \end{array}\right.$ indicate that they vary with time (not constant), so we use $\left[\begin{array}{lll} \vec{v}=\frac{d\vec{r}}{dt} & (4- 10) & \text{instantaneous velocity} \\ \vec{v}=v_{x}\hat{\mathrm{i}}+v_{y}\hat{\mathrm{j}}+v_{z}\hat{\mathrm{k}}, & (4- 11) & \text{instantaneous velocity}\\ & & v_{x}=dx/dt, v_{y}=dy/dt,v_{z}=dz/dt.\\ & & \\ \vec{a}=\frac{d\vec{v}}{dt} & (4- 16) & \text{instantaneous acceleration} \\ \vec{a}=a_{x}\hat{i}+a_{y}\hat{j}+a_{z}\hat{k} & (4- 17) & \text{instantaneous acceleration} \\ & & a_{x}=dv_{x}/dt, a_{y}=dv_{y}/dt, \mathrm{a}\mathrm{n}\mathrm{d} a_{z}=dv_{z}/dt. \end{array}\right]$ Integrating the components of $\vec{a}$, we find components of $\vec{v}$ $\left[\begin{array}{ll} v_{x}=\frac{3t^{2}}{2}+v_{0x} & =\frac{3}{2}t^{2}+5.00 \\ v_{y}=\frac{4t^{2}}{2}=2.0t^{2}+v_{0y} & =2.00t^{2.}+2.00 \end{array}\right]$ Integrating the components of $\vec{v}$, we find components of $\vec{r}$ $\left[\begin{array}{ll} r_{x}=\frac{\frac{3}{2}t^{3}}{3.00}+(5.00)t+r_{0x} & =\frac{t^{3}}{2}+(5.00)t+20.0 \\ r_{y}=\frac{2t^{3}}{3}+(2.00)t+r_{0y} & =\frac{2t^{3}}{3}+(2.00)t+40.0 \end{array}\right]$ (a) At $t=4.00\mathrm{s}$, $\left\{\begin{array}{ll} r_{x}=\frac{(4.00)^{3}}{2}+(5.00)(4.00)+20.0 & =(72.0m) \\ r_{y}=\frac{2(4.00)^{3}}{3}+(2.00)(4.00)+40.0 & =(90.7\mathrm{m}) \end{array}\right\}$ $\vec{r}=(72.0m)\hat{i}+(90.7\mathrm{m})\hat{\mathrm{j}}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.