Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 84: 9a

Answer

The average velocity with the least magnitude is for the displacement ending at point $C$. $| \vec{v}_{avg,AC}|=0.0083\mathrm{m}/\mathrm{s}.$

Work Step by Step

The $(x,y)$ coordinates of the points are $A=(15$ m$, -15$ m$), t_{A}=0,$ $B=(30$ m$, -45$ m$), t_{B}=300\mathrm{s}$ $C=(20$ m$, -15$ m$)$ , $t_{C}=600\mathrm{s}$ $D=(45$ m$,45$ m$)$ , $t_{D}= 900\mathrm{s}$. Use formulas: $\left[\begin{array}{lll} \Delta\vec{r}=\vec{r}_{2}-\vec{r}_{1} & (4- 2) & \text{Displacement} \\ \vec{v}_{avg}=\frac{\Delta\vec{r}}{\Delta t} & (4- 8) & \text{average velocity} \end{array}\right]$ (a) $\Delta\vec{r}_{AB}=\vec{r}_{B}-\vec{r}_{A}=(30m-15m)\hat{i}+(-45m-(-15m)\hat{j}\\=(15m)\hat{i}+(-30m)\hat{j} $ $ \displaystyle \vec{v}_{avg,AB}=\frac{\Delta\vec{r}_{AB}}{\Delta t}=\frac{(15m)\hat{i}+(-30m)\hat{j} }{300s}, $ $| \displaystyle \vec{v}_{avg,AB}|=\frac{\sqrt{(15m)+(-30m)} }{300s}=0.11$ m/s $\Delta\vec{r}_{AC}=\vec{r}_{C}-\vec{r}_{A}=(20m-15m)\hat{i}+(-15m-(-15m)\hat{j}=(5m)\hat{i}$ $| \displaystyle \vec{v}_{avg,AC}|=\frac{5m }{600s}=0.0083$ m/s $\Delta\vec{r}_{AD}=\vec{r}_{D}-\vec{r}_{A}=(45m-15m)\hat{i}+(45m-(-15m)\hat{j}=(30m)\hat{i}+(60m)\hat{j} $ $| \displaystyle \vec{v}_{avg,AD}|=\frac{\sqrt{(30m)+(60m)} }{900s}=0.07$ m/s The average velocity with the least magnitude is for the displacement ending at point $C$. $| \vec{v}_{avg,AC}|=0.0083\mathrm{m}/\mathrm{s}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.