Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 84: 12a

Answer

$|\Delta\vec{r}|=56.6$ m

Work Step by Step

Define a coordinate system. Let the flagpole be the origin, let the +x direction be due east, and +y due north. The formulas available to us : $\left[\begin{array}{lll} \vec{r}=x\hat{i}+y\hat{j}+z\hat{k} & (4- 1) & \text{Position vector} \\ \Delta\vec{r}=\vec{r}_{2}-\vec{r}_{1} & (4- 2) & \text{Displacement} \\ \vec{v}_{avg}=\frac{\Delta\vec{r}}{\Delta t} & (4- 8) & \text{average velocity} \\ \vec{a}_{avg}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\Delta\vec{v}}{\Delta t} & (4- 15) & \text{average acceleration} \end{array}\right]$ The text now gives us $\vec{r_{1}}=(40.0m)\hat{i} ,\qquad \vec{v}_{1}=(-10.0m/s)\hat{j}$ $\vec{r}_{2}=(40.0m)\hat{j} ,\qquad \vec{v_{2}}=(10.0m/s)\hat{i}.$ $t=30.0s$ (a) Eq. 4-2 gives us the displacement $\Delta\vec{r}=\vec{r_{2}}-\vec{r_{1}}=(-40.0m)\hat{i}+(40.0m)\hat{j}$ Magnitude: $|\Delta\vec{r}|=\sqrt{(-40.0\mathrm{m})^{2}+(40.0\mathrm{m})^{2}}=56.6$ m
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.