Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 84: 4a

Answer

$14$ cm

Work Step by Step

First, define the coordinate system. Let the clock center be the origin and when the hand points to 3 o'clock, we take it to be the +x direction, when it points to 12 oclock, this is +y. (a) We interpret the initial position of the hand: $\vec{r_{1}}=(10\mathrm{c}\mathrm{m})\hat{\mathrm{i}}$ and the final position: $\vec{r_{2}}=(-10\mathrm{c}\mathrm{m})\hat{\mathrm{j}}$. We have some formulas at hand, $\left[\begin{array}{lll} \vec{r}=x\hat{\mathrm{i}}+y\hat{\mathrm{j}}+z\hat{\mathrm{k}} & (4- 1) & \text{Position vector} \\ \Delta\vec{r}=\vec{r}_{2}-\vec{r}_{1} & (4- 2) & \text{Displacement} \\ \Delta\vec{r}=(x_{2}-x_{1})\hat{\mathrm{i}}+(y_{2}-y_{1})\hat{\mathrm{j}}+(z_{2}-z_{1})\hat{\mathrm{k}} & (4- 3) & \text{Displacement} \end{array}\right]$ Using 4-2, $\Delta\vec{r}=\vec{r}_{2}-\vec{r}_{1}=(-10cm)\hat{j}-(10cm)\hat{i} =(-10cm)\hat{i}+(-10cm)\hat{j}.$ Its magnitude is $|\Delta\vec{r}|=\sqrt{(-10\mathrm{c}\mathrm{m})^{2}+(-10\mathrm{c}\mathrm{m})^{2}}=14$ cm
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.