Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 84: 10a

Answer

$e=3.50$ m/s.

Work Step by Step

$\left[\begin{array}{lll} \vec{r}=x\hat{\mathrm{i}}+y\hat{\mathrm{j}}+z\hat{\mathrm{k}} & (4- 1) & \text{Position vector} \\ \vec{v}=\frac{d\vec{r}}{dt} & (4- 10) & \text{instantaneous velocity} \\ \vec{v}=v_{x}\hat{\mathrm{i}}+v_{y}\hat{\mathrm{j}}+v_{z}\hat{\mathrm{k}}, & (4- 11) & \text{instantaneous velocity} \\ & & v_{x}=dx/dt, v_{y}=dy/dt,v_{z}=dz/dt. \end{array}\right]$ Given $\quad \vec{r}=5.00t\hat{\mathrm{i}}+(et+ft^{2})\hat{\mathrm{j}},$ $v_{x}=dx/dt=5.00$ m/s $v_{y}=dy/dt=(e+2ft)$ m/s $\vec{v}=5.00\hat{\mathrm{i}}+(e+2ft)\hat{\mathrm{j}}$ The angle of $\vec{v} $ is $\displaystyle \theta=\tan^{-1}(\frac{v_{y}}{v_{x}})$ $\displaystyle \theta=\tan^{-1}(\frac{e+2ft}{5.00})\qquad(*)$ (a) Reading the graph at $t=0,$ we see $\theta=35.0^{\mathrm{o}}$. Insert into the expression$\qquad(*)$ $35.0^{\mathrm{o}}=\displaystyle \tan^{-1}(\frac{e+2f(0)}{5.00})$ $\displaystyle \tan(35.0^{\mathrm{o}})=\frac{e}{5.00}$ $e=5.00\tan(35.0^{\mathrm{o}})=3.50$ m/s.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.