Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 37 - Relativity - Problems - Page 1147: 25d

Answer

To S', the time interval between flashes is $~~4.39\times 10^{-6}~s$

Work Step by Step

We can find $\gamma$: $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ $\gamma = \frac{1}{\sqrt{1-0.480^2}}$ $\gamma = 1.14$ We can find the temporal coordinate $t_1'$ of the big flash: $t_1' = \gamma~(t_1-vx_1/c^2)$ $t_1' = 1.14~[(0)-\frac{-(0.480)(1200~m)}{(3.0\times 10^8~m/s)}]$ $t_1' = (1.14)(1.92\times 10^{-6}~s)$ $t_1' = 2.189\times 10^{-6}~s$ We can find the temporal coordinate $t_2'$ of the small flash: $t_2' = \gamma~(t_2-vx_2/c^2)$ $t_2' = 1.14~[(5.00\times 10^{-6}~s)-\frac{-(0.480)(480~m)}{(3.0\times 10^8~m/s)}]$ $t_2' = (1.14)(5.00\times 10^{-6}~s+0.768\times 10^{-6}~s)$ $t_2' = 6.576\times 10^{-6}~s$ We can find $\Delta t'$: $\Delta t' = t_2'-t_1'$ $\Delta t' = 6.576\times 10^{-6}~s-2.189\times 10^{-6}~s$ $\Delta t' = 4.39\times 10^{-6}~s$ To S', the time interval between flashes is $~~4.39\times 10^{-6}~s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.