Answer
The clock reads $~~8.00\times 10^{-7}~s$
Work Step by Step
We can calculate the time it takes in the rest frame:
$t = \frac{180~m}{(0.600)(3.0\times 10^8~m/s)} = 1.00\times 10^{-6}~s$
We can find the time in the clock frame of reference:
$t' = \gamma~[(1.00\times 10^{-6}~s)-\frac{(0.600~c)(180~m)}{c^2}]$
$t' = 1.25~[(1.00\times 10^{-6}~s)-\frac{(0.600)(180~m)}{3.0\times 10^8~m/s}]$
$t' = 1.25~(1.00\times 10^{-6}~s-0.360\times 10^{-6}~s)$
$t' = 8.00\times 10^{-7}~s$
The clock reads $~~8.00\times 10^{-7}~s$