College Physics (4th Edition)

Published by McGraw-Hill Education
ISBN 10: 0073512141
ISBN 13: 978-0-07351-214-3

Chapter 13 - Problems - Page 499: 65

Answer

(a) The kinetic energy per unit volume is $1.52\times 10^5~J/m^3$ (b) The kinetic energy per unit volume is $4.55\times 10^7~J/m^3$

Work Step by Step

(a) The total translational kinetic energy is the number of molecules $N$ multiplied by the average translational kinetic energy of the molecules $\overline{KE}$. We can find the kinetic energy per unit volume: $N\times~\overline{KE} = \frac{3}{2}~NkT$ $KE = \frac{3}{2}~PV$ $\frac{KE}{V} = \frac{3}{2}~P$ $\frac{KE}{V} = \frac{3}{2}~(1.01\times 10^5~Pa)$ $\frac{KE}{V} = 1.52\times 10^5~J/m^3$ The kinetic energy per unit volume is $1.52\times 10^5~J/m^3$ (b) We can find the kinetic energy per unit volume at $P = 300.0~atm$: $N\times~\overline{KE} = \frac{3}{2}~NkT$ $KE = \frac{3}{2}~PV$ $\frac{KE}{V} = \frac{3}{2}~P$ $\frac{KE}{V} = \frac{3}{2}~(300.0)(1.01\times 10^5~Pa)$ $\frac{KE}{V} = 4.55\times 10^7~J/m^3$ The kinetic energy per unit volume is $4.55\times 10^7~J/m^3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.