Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 171: 38

Answer

$\frac{m_{neucleus}}{m_{neutron}}=7.7$

Work Step by Step

Please see the attached image first. For an elastic collision, we can write the equation below. $V_{2}=\frac{2m_{1}}{m_{1}+m_{2}}u_{1}+\frac{(m_{1}-m_{2})}{m_{1}+m_{2}}u_{2}-(1)$ In this case, $m_{1}=mass\space of\space neutron,\space m_{2}=mass\space of\space nucleus,\space u_{2}=0$ From $(1)=\gt$ $V_{2}=\frac{2m_{1}u_{1}}{(m_{1}+m_{2})}-(2)$ Kinetic energy of Neutron $(K_{1})=\frac{1}{2}m_{1}u_{1}^{2}$ Kinetic energy of Neutron $(K_{2})=\frac{1}{2}m_{2}V_{2}^{2}$ Percentage of transferred kinetic energy $=\frac{K_{2}}{K_{1}}\times 100\%=48.4\%$ $48.4\%=\frac{\frac{1}{2}m_{2}V_{2}^{2}}{\frac{1}{2}m_{1}u_{1}^{2}}\times100-(3)$ $(2)=\gt(3)$ $48.4\%=\frac{m_{2}(\frac{2m_{1}u_{1}}{m_{1}+m_{2}})^{2}}{m_{1}u_{1}^{2}}\times100\%$ $0.484=\frac{4m_{1}^{2}m_{2}u_{1}^{2}}{(m_{1}+m_{2})^{2}}\times\frac{1}{m_{1}u_{1}^{2}}$ $4m_{1}m_{2}=0.484(m_{1}^{2}+2m_{1}m_{2}+m_{2}^{2})$ $0=m_{1}^{2}-6.26m_{1}m_{2}+m_{2}^{2}$ We can solve this quadratic equation as follows. $m_{1}=\frac{-(-6.26m_{2})\pm \sqrt {(-6.26m_{2})^{2}-4\times1\times m_{2}^{2}}}{2}$ $m_{1}=\frac{6.26m_{2}\pm 6m_{2}}{2}$ $(+) =\gt m_{1}=6.13m_{2}\space \space \space\space \space \space \space \space (-)=\gt m_{1}=0.13m_{2}$ In here $\space m_{1}\lt m_{2}$, therefore we have to choose second result & we get, $\frac{m_{2}}{m_{1}}=\frac{m_{neucleus}}{m_{neutron}}=7.7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.