Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 171: 35

Answer

$195.12\space km/s$ $Direction = 25.9^{\circ} $ from the spacecraft initial direction

Work Step by Step

Please see the attached image first. Here we use the principle of conservation of momentum. $\vec P= Constant$ We can write, $m_{SC}\vec V_{SC}= m_{O}\vec V_{O}+m_{L}\vec V_{L}$ Let's choose the x-axis along the direction of $\vec V_{SC}.$Then the two components of the momentum conservation equation become, x component : $m_{SC}V_{SC}= m_{O}V_{Ox}+m_{L}V_{L x}$ y component : $0= m_{O}V_{Oy}+m_{L}V_{L y}$ $\rightarrow V_{Lx}= \frac{m_{SC}V_{SC}-m_{O}V_{O x}}{m_{L}}= \frac{m_{SC}V_{SC}-m_{O}V_{O}cos\theta}{m_{L}} $ Let's plug known values into this equation. $V_{Lx}=\frac{784\space kg\times81.6\space km/s-549\space kg\times55.2cos(41.4^{\circ})\space km/s}{235\space kg}$ $V_{lx}=175.5\space km/s$ $\downarrow V_{Ly}= -\frac{m_{O}V_{Oy}}{m_{L}}= -\frac{m_{O}V_{O }sin\theta}{m_{L}}$ $V_{Ly}=\frac{-549\space kg\times[-55.2\space km/s\times sin(41.4^{\circ})]}{235\space kg}=85.28\space km/s$ $V_{L}=\sqrt {V_{Lx}^{2}+V_{Ly}^{2}}= \sqrt {175.5^{2}+85.28^{2}}km/s$ $V_{L}=195.12\space km/s $ $tan\alpha=\frac{V_{Ly}}{V_{Lx}}=\frac{85.28\space km/s}{175.5\space km/s}$ $\alpha=25.9^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.