Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 171: 34

Answer

$1.15\space i+1.33\space j$

Work Step by Step

Please see the attached image first. Here we use the principle of conservation of momentum. $\vec P= Constant$ We can write, $m_{Li}\vec V_{Li}= m_{P}\vec V_{P}+m_{\alpha}\vec V_{\alpha}$ Let's choose the x-axis along the horizontal direction & y - axis along the vertical direction. Then the two components of the momentum conservation equation become, x component : $m_{Lix}V_{Li}= m_{P}V_{px}+m_{\alpha}V_{\alpha x}$ y component : $m_{Li}V_{Liy}= m_{P}V_{py}+m_{\alpha}V_{\alpha y}$ $\rightarrow V_{Lix}= \frac{m_{P}V_{px}+m_{\alpha}V_{\alpha x}}{m_{Li}}= \frac{m_{P}V_{P}sin\theta_{1}-m_{\alpha}V_{\alpha}sin\theta_{2}}{m_{Li}} $ Let's plug known values into this equation. $V_{Lix}=\frac{U\times1.78\space Mm/s\times sin(24.7^{\circ}) +4U\times2.4\space Mm/s\times sin(31.5^{\circ})}{5U}$ $V_{Lix}=1.15\space Mm/s$ $\uparrow V_{Liy}= \frac{m_{P}V_{py}+m_{\alpha}V_{\alpha y}}{m_{Li}}= \frac{m_{P}V_{P}cos\theta_{1}-m_{\alpha}V_{\alpha}cos\theta_{2}}{m_{Li}}$ $V_{Ly}=\frac{4U(2.43\space Mm/s)cos(31.5^{\circ})-U(1.78\space Mm/s)cos(31.5^{\circ})}{5U}=1.33\space Mm/s$ $V_{Li}=V_{Lix}i+V_{Ly}j= 1.15\space i+1.33\space j$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.