Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 171: 33

Answer

$7.65\space Mm/s$ $Direction =12.46^{\circ}$ to the alpha particle's direction

Work Step by Step

Please see the attached image first. Here we use the principle of conservation of momentum. $\vec P= Constant$ We can write, $m_{Li}\vec V_{Li}= m_{P}\vec V_{P}+m_{\alpha}\vec V_{\alpha}$ Let's choose the x-axis along the direction of $\vec V_{Li}.$Then the two components of the momentum conservation equation become, x component : $m_{Li}V_{Li}= m_{P}V_{Px}+m_{\alpha}V_{\alpha x}$ y component : $0= m_{P}V_{Py}+m_{\alpha}V_{\alpha y}$ $V_{px}= \frac{m_{Li}V_{Li}-m_{\alpha}V_{\alpha x}}{m_{p}}= \frac{m_{Li}V_{Li}-m_{\alpha}V_{\alpha}cos\theta}{m_{p}} $ Let's plug known values into this equation. $V_{px}=\frac{5U\times2.25\space Mm/s-4U\times1.03\space Mm/s\times cos(23.6^{\circ})}{U}$ $V_{px}=7.47\space Mm/s$ $V_{py}= -\frac{m_{\alpha}V_{\alpha y}}{m_{p}}= -\frac{m_{\alpha}V_{\alpha }sin\theta}{m_{p}}$ $V_{py}=\frac{-4U\times1.03\space Mm/s\times sin(23.6^{\circ})}{U}=1.65\space Mm/s$ $V_{p}=\sqrt {V_{px}^{2}+V_{py}^{2}}= \sqrt {7.47^{2}+1.65^{2}}Mm/s$ $V_{p}=7.65\space Mm/s$ $tan\alpha=\frac{V_{py}}{V_{px}}=\frac{1.65\space Mm/s}{7.47\space Mm/s}$ $\alpha=12.46^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.